Handy Tools: Improved AI Flight Model and Camera Scripts
Armed Assault
By Geloxo

Revision history:

- 20 Jul 2007: v1.0 creation

- 30 Ago 2007: v1.01 update

- Fixed aircam mode not working in FX Cam

- Fixed take unit control mode not working in FX Cam and trackcam

- 21 Feb 2008: v1.02 update

- Fixed burn effect not working in FX Cam

- Added Handy Tools on-screen dialog

- Core scripts redesign
- 25 Ago 2008: v1.03 update

- Fixed syntax error in trackcam producing error message

- Fixed aircam manual mode (disabled)

- Fixed repeat action in choppers and jets

- Removed htcamdef.1sqs preload in handytools

- Added predefined camera sets in handytools (overridden when loading user sets)

- 18 Oct 2008: pre-release for Rope System Addon

· Added Rope System functions

0. Index
1. Introduction

2. Installation and usage
3. Script reference

4. Configuration

5. Functionality

6. Keyboard shortcut reference

7. Action menus and virtual borders

8. Handy Tools configurator

9. Handy Tools radio chatter

10. Handy Tools camera unit

11. Handy Tools fire effects (Flametrower and Molotov)
12. Handy Tools dialog

13. Handy Tools Rope System
14. known issues

1. Introduction
These tools appeared due to the need to improve and speed up the creation of cutscenes. Additionally the flight model for both choppers and jets had, in my opinion, to be improved a little and that´s why I decided to experiment with it. The Handy Tools may become hard to use, configure or understand but the resulting output is very useful after some practice.

I can´t provide support for those scripts so you need to read this document and learn on your own using the included missions as practical examples.

Great thanks to people who share their work and allow us to get some more new ideas to improve the game.

Feel free to use the Handy Tools code on your scripts or modify it but please share the resulting script for us to enjoy it too.

Feel free to upload the Handy Tools content or videos to any server for people to access it. No permission from myself will be needed.

2. Installation and usage
Add "HT.pbo" and "HTRAD.pbo" to your AddOns folder. Add single player mission folders to your user mission folder and preview them on the mission editor. Open source content can be extracted from .pbo files for learning purposes or to create new scripts.

There are two options to start the main camera scripts:

a) place the handy tools camera unit (found under civilian – handy tools class) on the map and the start action will be added if you select this unit as player or this unit is placed near the player

b) add to any unit init field, to "init.sqs" mission file or call by means of Radio or Triggers in a mission the following: this exec “ht\handytools.sqs”
This action launches the main script and then keyboard and menus actions can be triggered as explained below.
For usage or chopper and jet scripts see sections 4 and 5 below.
3. Script reference
Listed below you will find a quick reference and examples for all scripts included in the Handy Tools release.

Handy Tools main scripts
These are the main scripts than you will need to directly call on your missions in order to use the Handy Tools.

Choppers
Helicopter flight model script.

Usage: [vehicle, ref path to follow, starting waypoint, ending waypoint, speed limit, [x,y,z], [action waypoint, "action", action speed, [x´,y´,z`], "marker", [variable0, variable1, variable2]]] exec "\ht\choppers.sqs"

Example: [heli1, ref1, 1, 6, 70, [0,0,0], [[2, "land", 40, [0,0,0], "LZ1", 1], [3, "land", 20, [0,0,0], "LZ1", [10,0,0]]] exec "\ht\choppers.sqs"

Jets
Jet flight model script

Usage:

Example:

FXCam
Collection of cameras that can be manually controlled by player. Unit control is denied to player.

Usage: [unit, target, [xoffset,yoffset,zoffset],relative cam, time limitation, war ambient] exec "\ht\FXcam.sqs"

Example: [heli1,tank1,[1,-5,2],false,300,"fire"] exec "\ht\FXcam.sqs"

Trackcam
Fixed and tracking cam. Player manually controls a unit in front of a camera. Camera control is denied to player.

Usage: [unit, [xoffset,yoffset,zoffset], tracking, time limitation] exec "\ht\trackcam.sqs"

Example: [heli1,[1,-5,2],false,300] exec "\ht\trackcam.sqs"

Handytools
Main init script for the camera tools. Starts key pressing scripts, camera scripts and displays on screen dialog.

Usage: this exec "ht\handytools.sqs"

Example: add the usage text to Radio Alfa init field

Handy Tools configuration files (optional)
The following scripts are optional and must be placed at mission folder in case player desires to use them. They contain the configuration data for cameras, choppers / jets plannings and also the shortcut definition that allows usage of camera keyboard commands.

htch_index (not relevant name)
Place it at mission folder. Optional on choppers or jets. Needs to be called in game. Mission template to store choppers paths and their action planning (editable).

Usage: this exec "htch_index.sqs"

Example: add the usage text to Radio Alfa init field.

htcamdef
Place it at mission folder. Required by HTCams. FX camera index files to save different sets of camera postions and their configuration (editable). Currently up to four camera definition sets are supported by these tools, but each of those definition files can contain as many camera positions as you want.
Stand-alone scripts
The following scripts are used by the Handy Tools scripts but can be also called on any other mission as stand-alone scripts.

Artillery
Call arty strike on a position, unit or marker on map single click.

Usage: [target position,radius,number,interval,["GrenadeHand","Sh_105_HE"]] exec "\ht\stand\artillery.sqs"

Example: [getpos tank1,50, 10, 1,["Sh_105_HE"]] exec "\ht\stand\artillery.sqs"

Cargo
Move squad into a vehicle (instantly)

Usage: [squad leader, vehicle] exec "\ht\stand\cargo.sqs"

Example: [squad1, truck1] exec "\ht\stand\cargo.sqs"

Eject
Forces a squad to eject from a vehicle (parachute).

Usage: [squad leader, vehicle] exec "\ht\stand\eject.sqs"

Example: [squad1, heli1] exec "\ht\stand\eject.sqs"

Enter
Forces a squad to get in a vehicle.

Usage: [squad leader, vehicle] exec "\ht\stand\enter.sqs"

Example: [squad1, truck1] exec "\ht\stand\cargo.sqs"

Evasan (beta)

Forces a four-medic team to move a wounded soldier into a vehicle.

Usage: [wounded, medic1, medic2, medic3, medic4, vehicle] exec "\ht\stand\evasan.sqs"

Example: [soldier, med1, med2, med3, med4, heli1] exec "\ht\stand\evasan.sqs"

Exit
Forces a squad to get out from a vehicle (no parachute).

Usage: [squad leader, vehicle] exec "\ht\stand\exit.sqs"

Example: [squad1, truck1] exec "\ht\stand\exit.sqs"

Fireweapon
Forces a unit to fire one of its weapons (instantly).

Usage: [unit,weapon type,number,interval] exec "\ht\stand\fireweapon.sqs"

Example: [tank1, 0, 12, 0.1] exec "\ht\stand\fireweapon.sqs"

Flamegun
Activates flamethrower and molotov weapons effect.

Usage: unit addEventHandler ["fired",{_this exec "\ht\stand\flamegun.sqs"}]

Example: tank1 addEventHandler ["fired",{_this exec "\ht\stand\flamegun.sqs"}]
SetPos
Changes unit position on map single click (instantly).

Usage: unit exec "\ht\stand\setpos.sqs"

Example: add the usage text to Radio Alfa init field.

Fire effect scripts
The following scripts are understood to be used under the scope of fire effects.

Addfire
Called by burn. Adds new fire effects and damage units.

Usage: [unit, type] exec "\ht\effects\addfire.sqs"

Example:

Burn
Creates a fire effect attached to a static unit or moving vehicle.

Usage: [unit,effect,[xoff,yoff,zoff],timelimit] exec "\ht\effects\burn.sqs"

Example: [tank1,true,[0,0,0],0] exec "\ht\effects\burn.sqs"

Core scripts
The following scripts are understood to be used only by Handy Tools main scripts or are currently obsoleted. Therefore they usually are out of the scope of any other usage as stand-alone scripts.

Aircam
Obsoleted by FXCam. Air camera script.

Usage: [unit, [xoffset,yoffset,zoffset], relative cam, time limitation] exec "\ht\core\aircam.sqs"

Example: [heli1,man1,[1,-5,2],false,300] exec "\ht\core\aircam.sqs"

Config.cpp
Not usable by player. Config file for handy tools resources.

Contmgfire

Used by FXCam. Manually controlled weapon fire script.

Usage: [target,distance,altitude,speed,number,interval,["B_762x51_Ball",# tracers]] exec "\ht\core\contmgfire.sqs"

Example:

Controlfire

Used by FXCam. Manually controlled weapon fire script.

Usage: [target,distance,altitude,speed,number,interval,["B_762x51_Ball","B_127x99_Ball"]] exec "\ht\core\controlfire.sqs"

Example:

Eventfired
Used by FXCam. Missile or bullet cam script.

Usage: unit addEventHandler ["fired",{_this exec "\ht\core\eventfired.sqs"}]

Example: tank1 addEventHandler ["fired",{_this exec "\ht\core\eventfired.sqs"}]

Eventhit
Used by Choppers and Jets. Under fire reporting.

Usage: unit addEventHandler ["hit",{_this exec "\ht\core\eventhit.sqs"}]

Example: tank1 addEventHandler ["hit",{_this exec "\ht\core\eventhit.sqs"}]

Flame

Used by FXCam. Manually controlled fire effect script.

Usage: [unit,distance,altitude,speed,number] exec "\ht\core\flame.sqs"

Example:

HTMenu
Obsoleted by FXCam. Adds Handy Tools action menu to player´s current action menu.

Usage: this exec "\ht\core\htmenu.sqs"

Example: add the usage text to Radio Alfa init field

Locate
Locates target positions related to unit.

Usage: [unit, getpos target] exec "\ht\core\locate.sqs"

Example: [tank1, getmarkerpos "A"] exec "\ht\locate.sqs"

Manual cam
Obsoleted by FXCam. Manually controlled camera script.

Usage: [unit, [xoffset,yoffset,zoffset],relative cam, time limitation] exec "\ht\core\manualcam.sqs"

Example: [heli1,tank1,[1,-5,2],false, 300] exec "\ht\core\manualcam.sqs"

Ricochets
Obsoleted by FXCam. Creates bullet ricochets effects on a unit. Ammo will be randomly taken from the list of available ammo included between brackets (for instance ["B_762x54_noTracer","B_127x99_Ball_noTracer"] means that ricochets will use 7.62mm and 12.7mm bullets).

Usage: [unit,radius,speed,number,interval,["B_762x54_noTracer","B_127x99_Ball_noTracer"]] exec "\ht\core\ricochets.sqs"

Example: [tank1, 50, 200, 1000, 0.1,["B_127x99_Ball_noTracer"]] exec "\ht\core\ricochets.sqs"

Warcam
Used by FXCam. Creates war effects

Usage: ["effect", unit] exec "\ht\core\warcam.sqs"

Example: ["fire", tank1] exec "\ht\core\warcam.sqs"

4. Configuration

Configuration process may be the hardest procedure and that´s why optional configuration files are suggested in order to save the content to be used as a basis or template for next missions you create and allow copy and paste on a text editor program instead of entering data into mission editor.

Standard config procedure
You can just add the usage text format to any unit init field, to "init.sqs" mission file or call it by means of Radio or Triggers in a mission.

Example: on a trigger init field you place [squad1, heli1] exec "\ht\eject.sqs" so that squad1 will eject from heli1 when any unit activates that trigger.

File config procedure
You can add the Handy Tools configuration files (htch_index.sqs and htcamdef.sqs) to your mission folder and store there the predefined config for choppers, jets and cameras. Those scripts are called in game and will load the data automatically allowing you to save your data for future usage even if you delete the related units from the map. There are some comments to be taken into account:

a) Choppers and jets: the file name htch_index is not relevant but this script needs to be called by means of an external source, such as a Radio (e.g: radio alfa), Trigger, any unit init field, mission “init.sqs” file or any other script using: this exec "htch_index.sqs" (or whatever the file name you want to use)

Example: on Radio Alfa init field you place this exec "mychoppers.sqs" so that choppers flight plans listed on mychoppers.sqs file are started when you call Radio Alfa in game.
Several choppers scripts and configuration files can be used in the same mission, so that you can, for instance, define a file for cargo choppers and another one for gunships and call them at the same time or one next to the other (one index file can call a second index file if you want so). Therefore you can start the cargo choppers and when they reach a defined position call the gunship choppers index using a trigger.

There is a vehicle variable named vehicle getvariable "htch_exit" that will stop the unit running script when its value is set to "true". This can be used to stop current script and run another one with different configuration (e.g: different reference path). Stopping the leader running script will cause all units running the "follow" action on this leader to stop too.

Example: heli1 setvariable ["htch_exit", true]

b) Cameras: the index file htcamdef is used to store the predefined camera configuration and is used by keyboard shortcuts commands to load the desired cam. This procedure is not mandatory, and the standard one can be also used.

Example1: on a trigger init file you place [heli1,heli2,[0,-10,5],false,300,"fire"] exec "\ht\fxcam.sqs" so that a camera will record heli2, will be placed at x = 0, y = -10, z = 5, from heli1 using not relative position, will last 300s and will add the fire effect to both heli1 and heli2

Example2: on the htcamdef1.sqs file which is placed on your mission folder you store 3 predefined cameras as follows:

_c1 = [heli3,heli1,[10,-30,15],false,0,"fire"]

_c2 = [man1,heli1,[0,-15,3],true,0,""]

_c3 = [man2,man2,[0,-20,5],true,0,""]

htfxcamdef = [_c1, _c2, _c3]
so that you can switch from cam 1 to cam 3 by means of your keyboard shortcuts (see below).
There is a public bool variable named htfxstop that will stop all the running camera scripts when its value is set to "true". Additionally to this you can automatically switch to any predefined cam if you set the value of the public variable htkey_cam to the desired cam value and call the "htcams.sqs" script afterwards. This allows you to schedule cutscenes in the middle of a running mission, and not only at the beginning or end.

Example: Add to a trigger init field htkey_cam = 1; this exec "\ht\htcams.sqs"; and cam 1 will be automatically started when a unit enters the trigger

Keyboard shortcuts procedure

You can define your desired keyboard shortcuts by editing the file htkeys index file.
The keyboard script assigns public variables values that can be used for any other scripts, such as the FXCam. You can define keyboard codes to set your custom commands in the index file. See "http://community.bistudio.com/wiki/displaySetEventHandler" for a complete reference list. If new variables are added you have to set their initial values on "htkeyrestore.sqs".
Example: on "htkeys.sqf" we define the public variables htkey0, htkey1, htkey2 and htkey3 used by FXCam when the "fire" mode effect is active.

if (htkey == 56) then {htkey0 = true}

if (htkey == 184) then {htkey1 = true}

if (htkey == 57) then {htkey2 = true}

if (htkey == 157) then {htkey3 = true}
There is a public bool variable htkeystop that will stop the keyboard shortcuts when its value is set to "true".

5. Functionality
A detailed explanation of the scripts functionality is included here. Core scripts are not explained as player is not supposed to need them anymore.

Some scripts will display radio chat messages when actions are complete (e.g: landing procedure terminated). To remove those messages just add the following text to any init field or config file:

; enableradio false
by removing the ";" at the beginning of that line. This command line is included in the htch_index file by default.

Choppers
To call the script we have to put on any unit (e.g: heli1) init field or on a trigger (e.g: Radio Alfa) init field:

[vehicle, ref path to follow, starting waypoint, ending waypoint, speed limit, [x,y,z], action1, action2, ...] exec "\ht\choppers.sqs"
where we can optionally add as many actions as we want (action1, action2, ...). If optional actions are added (they are not mandatory), each action element is an array with the following data:

[action waypoint, "action", action speed, [x´,y´,z´], "marker", [variable0, variable1, variable2]]
The following variables need to be defined:

- vehicle: unit that will execute the script

- ref path to follow: unit whose waypoints path will be used as a reference

- starting waypoint: waypoint to start the script

- ending waypoint: waypoint to finish the script

- speed limit: default speed limitation to apply to the unit (0 keeps current one, if any)

- [x,y,z]: default formation coordinates related to the current waypoint (z coordinate sets the flying altitude. 0 keeps current one).

And for each action array the following variables are needed:

- action waypoint: waypoint to execute the action

- "action": one of the following

Standard actions:

"": neutral, no action (use it to change formation or speed settings only)

"land": land at marker position

"load": land at marker position and load a unit

"unload": land at marker position and unload a unit

"supply": land at marker position and unload supplies

"eject": eject a unit from cargo

"fire": fire a given weapon when approaching marker

"attack": attack any enemy unit within marker range (attack radius defined by marker radius)

Special actions:

"repeat": repeat path when last waypoint is reached

"follow": follow a leader on the reference path. If leader is down chopper will turn to "" action (no action) and continue the path.

- action speed: speed limitation to apply during the action only (0 keeps last applied limit, if any). Kept until next action is scheduled.

- [x´,y´,z´]: formation coordinates to apply during the action only (z´ coordinate sets the flying altitude. 0 keeps last applied limit, if any). Kept until next action is scheduled.

- "marker" (not mandatory for all actions): target marker to be used for action

- [variable0, variable1, variable2] (not mandatory for all actions): extra variables to be used for action

"land" = [waiting time, touch down speed, touchdown altitude]

"load" = [unit to load, touch down speed, touchdown altitude]

"unload" = [unit to unload, touch down speed, touchdown altitude]

"supply" = [# crates to drop, touch down speed, touchdown altitude]

"eject" = [unit to eject, N/A, N/A]

"fire" = [weapon type, number of rounds, N/A]

"follow" = [leader to follow, N/A, N/A]

Example: add to any unit init field or to Radio Alfa trigger the following text [heli1, ref1, 1, 6, 70, [-5,0,40], [[2, "land", 40, [0,0,0], "LZ1", 12] ,
[5, "load", 20, [10,-20,0], "LZ1", squad1]]] exec "\ht\choppers.sqs" to execute script on heli1, following ref1 path, between waypoints 1 to 6, flying at 70 km/h, with formation coordinates [-5,0], altitude 40m and will execute two actions (blue and magenta):

- at waypoint 2, heli1 will fly at 40 km/h, land keeping [0,0,0] formation coordinates at LZ1 marker, and wait there 12s

- at waypoint 5, heli1 will fly at 20 km/h, land keeping [10,-20,0] formation coordinates at LZ1 marker, and load squad1 there

See "Image1.jpg" for a graphical example of this configuration.

General comments
- Be careful when setting reference path and formation settings. Smooth changes on the waypoints positions are recommended to avoid choppers to crash when they turn heading to the next waypoint. To prevent this you can make choppers to fly at different altitude or use column based formations (e.g: column, echelon right, wedge, V, etc).

- Do not place waypoints too close from each other especially when using high speed limits. Units may overpass them and start flying in circles trying to reach the waypoint. Units will switch to next waypoint when being within 50m range from waypoint position, therefore this is the minumum separation for waypoints, but this limit increases with speed.

- Take into account that formation will need some time to be adjusted after each turn when waypoints are reached, because pilots will apply their new heading, altitude and speed and that may mean you loose your assigned formation position. Keep an eye on your leader in order to use its position as a reference.

- Leader should be placed at [0,0,x] position although this is not mandatory.

- Close formations depend on rotor sizes. Usually the minimum separation for choppers should be 30m, and 50m works fine for most formations. Take this into account for line based formations.

- Remember that default formation settings are used until first action is executed or in case no action at all is scheduled. Therefore do not leave [0,0,x] or the same value for all choppers in the same formation or they will crash.

- Last executed action formation settings will be kept until next action waypoint is reached (if any). Use a neutral action ("") to change those parameters between two actions.

- Last executed speed and altitude limits are applied until new ones are set by another action (if any).

- When "follow" is used you only need to limit speed on the leader. Other units will automatically asjust their speed to leader´s one.

- When "follow" is used and leader completes its path all followers will be stopped too.

- After a standard action is executed (e.g: "land") you may find useful to set a "follow" action so that choppers can wait leader to complete its scheduled action.

- Complex formations can be set by means of using several small groups with secondary leaders may follow a unique leader or just lead their team. For all of them the same formation coordinates reference is still valid.

- If waiting time for landing actions is set to 0 this will cause chopper to turn off engines after landing and stop the script.

- If no touch down speed limit is set for landing action choppers will land at 5km/h. The higher the touch down speed limit the faster the landing will be. This is useful to simulate combat landings and also allows wheels-fitted choppers to land at higher speeds than skids-fitted ones.

- If no touch down altitude limit is set for landing choppers will land at 0m. You can define higher altitudes to force choppers to land at roofs or fast insert troops flying at some meters over water while chopper goes on flying.

- Do not place marker too close to starting action waypoint when landing actions are used at high speed or altitude. Units need to adjust speed and altitude when approaching LZ and this may result in unrealistic landings. Landing speed and altitude adjustment starts at half the way from the starting action waypoint to the marker position. For large formations you may find useful to define several landing markers, each of them for smaller groups of choppers.

- The slower the flight speed the better result for the formations.

- To simulate group take offs just start the scripts (optionally you can also add some time delays in the file configuration) and use "follow" action so that units will join the leader as soon as they take off.

- If you want choppers to taxi before taking off / land just set low altitude and speed (e.g: 5m, 5km/h) before that action.

Automatic configuration generation procedure
In order to ease the choppers and jets configuration and ensure the complex data format needed for the script is kept an Excel based file (HT_Configurator.xls) is also included. Check the Handy Tools configurator chapter for more details about it.

Jets
A modified version of the choppers script can be used with jets. To call the script we have to put on any unit (e.g: jet1) init field or on a trigger (e.g: Radio Alfa) init field:

[vehicle, ref path to follow, starting waypoint, ending waypoint, speed limit, [x,y,z], action1, action2, ...] exec "\ht\jets.sqs"
where we can optionally add as many actions as we want (action1, action2, ...). If optional actions are added (they are not mandatory), each action element is an array with the following data:

[action waypoint, "action", action speed, [x´,y´,z´], "marker", variable]
The same configuration from choppers is applied to jets, but only the following actions are available:

"land"

"repeat"

"eject"

"fire"

"attack"

"follow"
General comments
- Landing action is issued by means of ArmA default landing action. Therefore runways will be entered from their standard pattern (usually clockwise). Therefore there is no landing formation prameters as jets will use de last active formation to land, but forcing a column formation at the final approach.

- Closer formations are possible (5m separation) with small jets such as Harriers.

- When jets starting position is "flying" usually it´s better to call the script from the mission init.sqs file rather than from a Radio trigger. Once mission is loaded the jets will start to follow their reference path, avoiding deviances from their path or formation to be lost.

FXCam
FXCam allows player to configure and use a predefined set of cameras with several special effects manually controlled by player. In order to get full access to all functionality from the cameras, Handy Tools configuration files procedures must be used.

Manual camera controls
You can define buldozer controls in game options menu to move camera with a mouse or joystick. Anyway the keyboard controls are:

Q = Up

Z = Down

A = Move Left

D = Move Right

W = Move Forwards

S = Move Backwards

Arrow Up = Pan Up

Arrow Down = Pan Down

Arrow Left = Pan Left

Arrow Right = Pan Right

L = Remove Crosshair

V = Exit Camera

F = Set/unset target

Num + = Zoom in

Num - = Zoom out

Num 5 = Zoom restore

Standard camera functions
- Camera HUD information

- Switch from tracking cam to static cam

- Switch from standard cam to air cam

- Switch to manual cam control

- Switch from relative to unit coordinates cam to relative to world coordinates cam

- Slow motion

Special effects functions
- Take player control over the unit camera is focused on as driver or gunner

- Damage units camera is focused on

- Activate missile cam

- Camera shake

- War ambient effects to be created at position where camera is focused on

The previous effects will be triggered when player uses any of the fire buttons according to the keyboard shortcuts.

To call the script add [unit, target, [xoffset,yoffset,zoffset],relative cam, time limitation, war ambient] exec "\ht\FXcam.sqs" to any unit init field.

The following variables must be defined:

- unit: unit camera will be attached to

- target: unit camera will be focused on

- [xoffset,yoffset,zoffset]: coordinates to place camera related to unit

- relative cam: sets if camera movements will be related to unit coordinates or to world coordinates

- time limitation: max time camera will run (0 sets no limit)

- war ambient: one of the following

"mgfire": creates machine gun fire

"ricochets": creates multiple bullet ricochets

"arty": creates arty shell explosions

"rockets": creates rocket firing effects

"smoke": creates smoke signals effects

"bombs": creates falling bombs explosions

"inrockets": creates incoming rocket firing effects

"inbombs": creates incoming falling bombs explosions

"fire": forces unit and target to fire their weapons

Example: [heli1,tank1,[1,-5,2],false,300,"fire"] exec "\ht\FXcam.sqs" will attach a cam to heli1 at [1,-5,2] coordinates, focused on tank1, with camera movements relative to world and adding the "fire" effect to both heli1 and tank1 and lasting 300s

TrackCam
TrackCam is a light version of FX cam that allows player to take control of units in front of the camera without any control of the camera itself.

Standard camera functions
- Camera HUD

- Switch from tracking cam to static cam

- Switch from standard cam to air cam

- Slow motion

- Adjust cam position

Special effects functions
- Take player control over the unit camera is focused on as driver or gunner

- Damage unit camera is focused on

- Activate missile cam

- Camera shake

- Fire unit weapons

To call the script add [unit, [xoffset,yoffset,zoffset], time limitation] exec "\ht\FXcam.sqs" to any unit init field.

The following variables must be defined:

- unit: unit camera will be attached to

- [xoffset,yoffset,zoffset]: coordinates to place camera related to unit

- time limitation: max time camera will run (0 sets no limit)

Example: [heli,[1,-5,2],false,300] exec "\ht\FXcam.sqs" will attach a tracking cam to heli1 at [1,-5,2] coordinates and lasting 300s.

Other camera resources
Virtual cinema borders
On some case you may need to recreate cutscenes and control the player unit at the same time. Handy Tools include a set of virtual cinema borders that will hide ingame HUD with black borders so that it looks like a cutscene. For better results you may want to hide weapon cursor on the game options menu. To call the virtual borders just use one of the following resources:

Black Borders: Vehicle (BlackBorder1): TitleRsc ["BlackBorder1", "PLAIN"]
Black Borders: Infantry (BlackBorder2): TitleRsc ["BlackBorder2", "PLAIN"]
Black Borders: Clear (remove existing resource): TitleRsc ["NONE", "PLAIN"]
Third party resources
These ones are listed as examples are not included in the Handy Tools release:

Binocular: TitleRsc ["binocular", "PLAIN"]
FLIR: TitleRsc ["MAP_AH64_FLIR_Optics", "PLAIN"]
Other effects
These effects are cutscene ingame ones (requiere a running camera)

NVGoogles: camUseNVG true
Cinema borders: showcinemaborder true
Those resources and effects can be added as predefined cameras to the htcamdef, integrate them on existing cameras or called by radio triggers, for instance. When a new resource is called the existing one is overriden.

Example: using the file configuration for cameras we will get night vision on camera 5 and it will be deactivated when switching to camera 6

if (htkey_cam == 5) then {camUseNVG true; [cobra,[0,0,0],false,300] exec "\ht\trackcam.sqs"}

if (htkey_cam == 6) then {camUseNVG false; [cobra,[0,10,-2],true,300] exec "\ht\trackcam.sqs"}
6. Keyboard shortcut reference
The keyboard script assigns public variables values that can be used for any other scripts, such as the FXCam. You can define keyboard codes to set your custom commands in the index file. See "http://community.bistudio.com/wiki/displaySetEventHandler" for a complete reference list of key codes. Default keyboard shortcuts are listed below:

;display Handy Tools dialog ("H")

if (htkey == 35) then {ok = createDialog "htfx_diag"}

;********************** KEYS *******************************

;fire buttons ("L ALT" "SPACE" "ALTGR" "R CTRL")

if (htkey == 56) then {htkey0 = true}

if (htkey == 184) then {htkey1 = true}

if (htkey == 57) then {htkey2 = true}

if (htkey == 157) then {htkey3 = true}

;damage buttons

if (htkey == 210) then {htkey4 = true}

if (htkey == 199) then {htkey5 = true}

if (htkey == 211) then {htkey6 = true}

if (htkey == 207) then {htkey7 = true}

;switch driver, gunner and take control ("BLOQ NUM" "/" "*")

if (htkey == 69) then {htkey8 = true}

if (htkey == 181) then {htkey9 = true}

if (htkey == 55) then {htkey10 = true}

;cam type ("ENTER")

if (htkey == 28) then {htkey_ct = true}

;relative cam ("DEL")

if (htkey == 14) then {htkey_re = true}

;static cam ("NUM 0")

if (htkey == 82) then {htkey_st = true}

;switch cam target ("NUM .")

if (htkey == 83) then {htkey_tar = true}

;shake rate ("L MAYS" "L CTRL")

if (htkey == 42) then {htkey_rate = htkey_rate + 1}

if (htkey == 29) then {htkey_rate = htkey_rate - 1}

;switch and stop cams ("," "." "-")

if (htkey == 51) then {htkey_cam = htkey_cam - 1; this exec "\ht\htcams.sqs"}

if (htkey == 52) then {htkey_cam = htkey_cam + 1; this exec "\ht\htcams.sqs"}

if (htkey == 53) then {htfxstop = true}

;war ambience ("[" "]")

if (htkey == 26) then {htkey_war = htkey_war + 1}

if (htkey == 145) then {htkey_war = htkey_war - 1}

;********************* SWITCHES *****************************

;cam shake ("BLOQ MAYS")

if (htkey == 58) then {htkey_sk = not(htkey_sk)}

;slow mottion ("TAB")

if (htkey == 15) then {htkey_sl = not(htkey_sl)}

;missile cam ("\")

if (htkey == 148) then {htkey_mc = not(htkey_mc)}

;cam manual control ("INTRO")

if (htkey == 156) then {htkey_ma = not(htkey_ma)}

;cam HUD ("´")

if (htkey == 146) then {htkey_hu = not(htkey_hu)}
Switches allow setting of permanet variable values and can be used, for example to turn slow motion on/off.

To display the key code ingame just enable the following line included in htkeys by default:

// hint format ["Key code: %1",htkey]
by removing the "//" at the beginning of that line.

8. Handy Tools configurator
In order to ease the choppers and jets configuration and ensure the complex data format needed for the script is kept an Excel based file (HT_Configurator.xls) is also included, which allows to set up to 10 actions for one single unit. That was created using Microsoft Works so I hope it´s Excel compatible...

In the configurator we just have to enter the needed data and the configuration text will be automatically generated. After that we need to copy the resulting text into the Handy Tools configuration files (htch_index.sqs) in case we use multiple actions per unit or directly into the unit (e.g: heli1) init field or on a trigger (e.g: Radio Alfa) init field.

Example: See "Image2.jpg" to see an screenshot of the file.

Procedure
1. Enter the default configuration settings, which are mandatory for every unit we want the script to run on (cells A5 to H5 in the example)

2. Fill the actions settings, which are optional as no action may be requested for all units. (cell A9 to H18 in the example)

Hint: you don´t have to add the " " to the action and marker fields (e.g: use land or LZ1 only instead of "land" and "LZ1"). They are automatically added by the file

3. In order to have the right autogenerated text format we have to consider two issues:

a)
Set any value in column A (marked with red numbers) to tell the configurator that you intend to schedule an action, or 0 if you want to disable that row. In case you use 0 then all existing data in that row will be ignored

b)
Start to enter action data using cells A9 to H9 for the first action, then A10 to H10 for the second and so on, but don´t leave any cell in column A with a 0 between to actions or the generated text format will be wrong and the sctipt will not run properly in game

4. Once you have entered the default settings and desired number of actions you just have to copy the autogenerated text and paste it into the game. To do that:

a)
Select rows 20 to 32 (yellow rows), click on copy and paste then into the notepad or into your htch_index.sqs

b)
Or in case you prefer it just select the row 34 (red row) and paste it into whatever the init field you want in game.

5. Now repeat steps 1 to 4 for all other units you want to run the script on or to reconfigure your previously entered settings.

9. Handy Tools radio chatter
There is one extra tool that can be used together with the standar tools: the radio chatter. This radio chatter will be automatically called by the scripts and will reproduce some useful messages when the choppers perform their actions to create a more realistic atmosphere. The chatter is deactivated by default so in order to turn it on just change the value to "true" in the following vehicle variable named vehicle getvariable "htradio" and optionally assign a fixed callsign to that vehicle by setting another vehicle variable named vehicle getvariable "htradcs" (random callsigns are used by default).
Example: Add to your htch_index.sqs the following lines:

heli1 setvariable ["htradio", true]

heli1 setvariable ["htradcs", [2, "super","1","1"]]
and you will activate radio chatter in heli1, using a fixed "superchief 1 1" callsign and using voice profile #2.

There is a set of custom text to speech generated voice profiles for the air units together with some old Flashpoint voice profiles for ground units. The last ones will be used for answering to the air units in some of the procedures:

"A" type profiles (air units):

pofile1: ATT Mike, radio format, speed + 2, volume x800

pofile2: Loq Dave, radio format, speed + 2, volume x800

pofile3: VW Paul, radio format, speed + 2, volume x800

pofile4: Loq Simon, radio format, speed + 2, volume x800

"B" type profiles (ground units):

Adam, Dan, Greg, John: volume x400

In some cases radio chat text messages will be displayed at the same time the sounds are played. To display the radio chat messages just set the public bool variable htradtext value to "true", for instance in any unit init field.

Special procedure:

- There is a procedure to be used even if units do not have the radio chat active, allowing to generate messages at special locations or time. Simply call the script via a trigger, for instance, adding to the init field [source, speaker, message, [callsingA], [callsignB]] execVM "\htrad\radio.sqf" and messages will be heard as in the standard case. You need to define some variables:

- source: the source unit to apply message to (needed for reporting "distance to target" or o generate smoke or arty)

- speaker: the unit that indeed plays the sound (can be one close to the player, a trigger or the player itself among others)

- message: one of the following:

"eta": reports "distance to target" (only valid if the source unit is one running the Handy Tools scripts with a valid action marker)

"report": reports unit coordinates (heading, altitude and speed)

"land": reports unit approaching to the landing zone

"load": exchanges radio messages previous to loading procedures

"unload": exchanges radio messages previous to unload procedures

"eject": exchanges radio messages previous to eject procedures

"hotlz": exchanges radio messages when unit is entering a hot landing zone and creates arty on source position
"complete": reports the "touch down" messages used in landings

"fire": exchanges radio messages previous to the fire procedures

"attack": exchanges radio messages previous to the attack procedures

"destroyed": exchanges radio messages after an attack

"complete": reports completed procedures after landings or ejects

"smoke": asks unit to drop smoke on its position and drops smoke on target (only valid if the source unit is one running the Handy Tools scripts with a valid action marker)

"hit": reports unit under fire

"mayday": reports unit emergency call

"base": reports unit returning to base

"randoma": generates random custom comments from unit A (not fully implemented yet)

"randomb": generates random custom comments from unit B (not fully implemented yet)

- [callsignA] and [callsign B]: containing both callsign and voice profile configuration. If an empty array is used (that is [] only) then random callsigns and voice profiles are set for each radio message.

General comments
- If you use the radio chatter then distances between actions should be greater (or speeds lower) in order to leave time for radio messages to be properly exchanged.

- If you want units to report "distance to target" between two actions place an extra marker for any of the intermediate actions, even if it is not needed for the actions. To avoid it use a non existing marker (e.g: "") until you reach the next action position.

- Only leading units will report "distance to target" and its coordinates when reaching the action starting waypoint, provided that distance to action marker is smaller than 5000m. Estimated time to arrive is calculated by means of the current unit speed, so this calculation may not be accurrate is unit speed is changing after the report.

- Do not activate radio chatter on too much units at the same time or sentences may overlap and you will not hear them properly. Usually only each team leader should use those commands to keep radio channel free, althoug this is not mandatory.

- You will hear the radio messages when you are close to the unit or if a camera is active on the unit. Distant units will not be heard on the radio chatter. When a manual cam is active all units will be heard.

10. Handy Tools camera unit
Under civil side ("Handy Tools: HT Camera") there is a camera unit that can be controled by player or being used as an invisible reference for FX Cam in case you want to target an specific map location where no other units exist. It can be also used as reference for the choppers waypoints or as movable invisible targets for instance. Main properties are:

- Invisible model

- Human-like movements

- Actions: Binoculars, NVGoggles and slow motion

- Set new position on map

- Undestructable (high armor)

- No threat to other units (civil side)

11. Handy Tools fire effects (Flamethrower and Molotov)
Under civil side ("Handy Tools: Flameman") there is a demo unit prepared to show the new Handy Tools fire and flamethrower effects. This unit is fitted with both flamethrower and molotov weapons and the idea is to use it as a basis for more refined weapon systems or units, as this one contains the very basics. Fire effects will damage units and buildings and will be attached to them too in case they are close enough. In order to reduce fps, those visual effects won´t last more than 120s and usually last between 10s and 30s.

To activate the flamethrower and molotov weapon effects we have to add to the unit init field who is firing those weapons the following line: this addEventHandler ["fired",{_this exec "\ht\stand\flamegun.sqs"}]

12. Handy Tools dialog
Once Handytools is launched it will create an onscreen dialog to easy the camera scripts usage. It can also be called at any moment by using:

ok = createDialog "htfx_diag"

or simply by pressing “H” while the scripts are running or in case the dialog was hidden by user.

[image: image1.png]
13. Handy Tools Rope System
Work in progress. Please refer to included readme for usage and configuration
14. Known issues
- Jets behaviour depends on game performance when the init is called. To get a better performance try to place then on map

as closer to their reference first waypoint as possible. Also their heading would be important.

- Choppers landing performance is better on flat areas and due to game scripting the load procedure must be done with

engines off to prevent chopper to move.

- You may notice different results in jets and choppers each time you run the mission due to the issues explained before.

- Camera position depends on map terrain shape therefore some glitches may be noticed when unit crosses over non continuous terrain areas. They are caused by sudden camera height position changes and are out of the scope of this release.

- Debug only: due to game performance, script lines must be reduced and external scripts must be used instead of adding the code to the loop itself.

- Fire effects visual behaviour depend on computer performance.

Enjoy the movie making!

Geloxo

