REVERSE ENGINEER OF DSCHULLE’S GETBANKPITCH SCRIPT

PERFORMED & DOCUMENTED BY CHRIS HAMPSON (aka Chris330,Adder_Noir)

Introduction:

Welcome to the documentation of the complete reverse engineer of Dschulle’s GetBankPitch utility designed for getting the pitch of any given vehicle active in an Operation Flashpoint mission. I must say it’s nice to be able to attach some big sounding words like ‘reverse engineer’ to some work I did. I suppose it makes me sound good, which is why I opted to call it that. This was done entirely from a ‘cold start’ which means I had no contact with the author of this script or any help from anyone else. I do not have any formal programming qualifications, nor do I use programming regularly as part of my job. Everything I have learned to do this with has been acquired in my own time with help from excellent websites and very kind forum members of the Operation Flashpoint community.

Although this gives me a great opportunity to blow my own trumpet it also provides an opportunity to prove that this kind of thing can be learned privately by anyone who is interested enough. My lack of formal qualifications in this field also mean that this project is likely to be worded in ways which you can understand as the memories of approaching these things from scratch are very fresh in my mind, so perhaps this will help me to communicate clearly with anyone who reads this document.

The intention of this project was for me to figure out the workings of Dschulle’s function so I could incorporate my own adapted version into a vehicle project I am working on. I decided however that it would be a waste not to share this knowledge with other members of the community. This project is intended to be aimed at people of beginner to intermediate level in writing programs for Operation Flashpoint, with the intention of showing you how advanced scripts work and hopefully giving you some inspiration to try out your own projects. It is not aimed at people who are completely new to the concept of programming. People who can program but do not have any grasp of trigonometry will struggle to understand what is going on in the later parts of this project.

An awful lot of the things in Dschulle’s function were very new to me when I first looked at it a few days ago, but with some detective work I have figured out what they are and what they mean. If you are already an expert and are reading this for light relief there may be one or two things you can spot which are not 100% accurate, but I have tried as hard as I possibly can to understand them and explain them in a user-friendly way.

Format:

Throughout this project you will see some drawings explaining how certain parts of the script work along with complete versions of the original scripts which will be documented to explain to you what they are doing. Some things will be highlighted in red to begin, but not later once they are familiar to you. I shall try and put all non-editable commands in red also to help makes things clear.

Feedback:

Although I don’t realistically expect to get any you can send feedback and questions to:

adder-noir@toucansurf.com
Or

chris330330@hotmail.com
I would prefer if you would use the first address as I do not consider hotmail to be secure and I suspect my hotmail account has been comprised at some point in the past (although not seriously), but you can attempt to reach me there if you cannot get me at the first address. Although given the nature of hackers and the like I cannot guarantee that if you do get a reply from my hotmail address that it will actually be me who has replied to you!

You can also normally find me at one of the Flashpoint forums. Just look for my username.

Script Concept:

Dschulle is indeed a clever guy. The script is very nice indeed and brought us the much needed ability to acquire information about a vehicle’s pitch and bank, utilities which were not included in the game by Bohemia. It uses a combination of scripts and functions. Before this project I had never used a function, but I have learned from the forums that they are there to speed up the executing of complex code and as such are considered faster and less heavy on your computer’s CPU usage than a script. Note that a function is initiated in a different manner to a script. Regular and beginner scripters in Operation Flashpoint (abbreviated to OFP from now on) will be very familiar with using the following type of command to call a script:

myvariable exec “myscript.sqs”

Where myvariable can be a number, array, objectID or whatever, but is most commonly a vehicle or an object identity such as ‘Plane1’ or ‘Soldier3’.

Functions do not behave in this way and they are not called or initiated in the same way a script is. A function has to have its presence declared before it is used. In layman’s terms this means you must tell OFP it is there before it can be used. This is not the case with a script. You do not have to declare a script before you use it. At a guess I suppose the reason this is, is because OFP pre-executes part of the function before it is actually used therefore making things faster. Don’t quote me on that however.

So in a script which executes before the function does we must use a command line which is similar to the following:

Myfunction = preprocessfile “myfunction.sqf”

This will not execute the function. It merely tells OFP it is there. Note that a function has file extension .sqf unlike a script which has file extension .sqs. Exactly where you can and can’t declare the presence of a function I must admit I do not know. Dschulle declares the presence of his functions in script which is executed by another script at the beginning of a mission (the init.sqs file). You may be able to declare a function directly in the init.sqs file of a mission or even in the init field of a vehicle. Again I’m not sure however, you’d have to try this out, but OFP might not like it (i.e. it might cause it to crash to desktop (abbreviated to CTD from now on)).

With that I think it would be a good time to show you more of how you correctly set-up Dschulle’s GetBankPitch utility so it will run in the game. Please goto the next page.

The mission folder:

[image: image1.jpg]Pitch Script Reverse Engineer

Fe Et Vew Fovollss Tooh Help 3

O - © - (B Do i ros |-

[e
File and Folder Tasks B R cetpantpich
%
29 Miske 3 new Foder
osptiosatote | [2w
a2 NED 3] Tt
|2 share this folder i w

Other Places

& Getpich
) My Documerts
& shared Documents
My Computer

3 iy NetworkPlaces

You might have to zoom in a bit to see it clearly. This is what you would have in your mission folder if you wanted to run the GetBankPitch utility. The Init.sqs and InitBankPitch.sqs files are included as part of the utility and are essential parts of it. The mission.sqm file is part of the demo mission provided by Dschulle. This does not have anything in it which is of vital importance to the correct operation of the utility. This could quite happily be the mission.sqm file relating to your own privately made mission, it makes no difference.

The GetBankPitch folder:

[image: image2.jpg]Flo Edt View Favortes

Tools

Help

O -0 3 ,osm [rosrs | G-

File and Folder Tasks

29 ke a e Folder

@ Fublsh ths Flder tothe
e

7 shr tis okdr

Other Places

&) Pich Seript Reverse.
Engneer

() My Documerts,
& shared Documents
My Computer

& 1y Network Places

[#)

[®)
[®)
[®)

_Calesiist
30F Fil
Tie

_dropcenter
505Fie
ke

_eropright
505Fie
ke

_iiehicle
505 Fie
ke

w[w)w)[w)

_calesLoistz0b
30F Fil
Tke

_ehopfront
505Fie
Tie

_GetBankPich
50F Fil
Tke

Testoints
3QF Fil
Tke

This is what is contained within the GetBankPitch folder you can see in the missions folder. This is where all the important stuff goes on. You could quite happily think of the two Init.sqs and InitBankPitch.sqs files as doing very little but sending instructions to the subordinate files contained within the GetBankPitch folder who have to do all the work. Rather like the old English class system (after all it never really went away it just got better at disguising itself – I know, I live there). So now you have seen how it has to be correctly set-up we can move on to the analysis, which will begin on the next page.

Init.sqs:

This file is not unique to this utility. It is a script often used at the beginning of a mission where mission writers can declare all sorts of things they want to before a mission begins. This file/script (whatever you want to call it) is loaded and executed at the very beginning of a mission. Dschulle has used it to initiate the utility, although he states that you don’t have to do it from the init.sqs file you can do it from the init field of a vehicle. Both methods will execute at the beginning of a mission, so it doesn’t really matter. Note when I say ‘initiate the utility’ I suppose the best way of describing it is that it ‘warms it up’. It’s a bit more complicated than that as you’ll see later. When you want to actually retrieve the bank and pitch values for use in another script you have to perform some instructions to get it to do it.

[mychopper] exec “InitBankPitch.sqs”

Where ‘mychopper’ is the vehicleID of the helicopter (also works with other vehicles) you want to get the bank or pitch of. This vehicleID is determined in the name field of the vehicle in the mission editor in the game. The reason it’s in square brackets [] is because you can put several vehicles into this utility and when the next scripts run it will expect to find the parameters that called it as part of an array. That’s why even if you only want to run it for one vehicle you still need those square brackets

[] or you will confuse the scripts in the next part of the utility. That’s it for Init.sqs.

InitBankPitch.sqs:

The script:

PlaneInfo = []

BankPitchSL = "EmptyDetector" camcreate [0,0,0]

BankPitchObjPos = "Logic" camcreate [0,0,0]

BankPitchCalcHeightASL = preprocessfile "GetBankPitch_CalcSLDist.sqf"

BankPitchTestPoints = preprocessfile "GetBankPitch_TestPoints.sqf"

;external Functions

GetBankPitch = preprocessFile "GetBankPitch_GetBankPitch.sqf"

GetBank = "call GetBankPitch select 0"

GetPitch = "call GetBankPitch select 1"

GetHeightASL = preprocessfile "GetBankPitch_CalcSLDist2Obj.sqf"

"_x exec ""GetBankPitch_initVehicle.sqs""" foreach _this

This is it in its raw form, although I have removed some descriptional parts of it which occur at the top. Don’t worry about these you don’t need to see them for this project and they do not alter the behaviour of the utility nor do they execute any commands or do anything. They are there simply to tell you who the author is and any miscellaneous instructions. To help keep things clear I will continue to remove any parts of scripts which are not relevant to the code. I will give you all the explanations you need to understand what is going on. To put your minds at ease however here is the bit I didn’t copy:

; ***

; Init Skript to enable Pitch/ Bank Function "GetBankPitch" by Dschulle

; Do not change!

; Syntax to init:

; [<unit1>, <unit2>, ...] exec "InitBankPitch.sqs"

; after Init, the initialised units can be used to get Pitch/ Bank angles:

; _BankPitchArray = <unit1> call GetBankPitch

; ***

You see. All the semi-colons are to instruct OFP to skip past that line. It’s just miscellaneous information.

· 1 PlaneInfo = []

This line simply declares the presence of a global variable and instructs OFP to treat it as an array. The reason it is not defined as a local variable (i.e. it does not have an underscore ‘_’ infront of it) is because it is called several times from different scripts and functions throughout the utility. This is important, you will see this array used a lot in this utility.

· 2 BankPitchSL = "EmptyDetector" camcreate [0,0,0]

I must confess I do not know what an “Empty Detector” stands for. At my best guess I would say it is a trigger with a catchment radius of zero in all directions or a game logic. I can tell you however that it is used purely as a positional reference later in the utility. In particular it is used to get values for heights of vehicles above sea level. The reason this is necessary is because if you use the getpos command to acquire the height or ‘z’ position of a vehicle in game the value returned will be the height of the vehicle above the terrain and not sea level. So basically put we could in OFP have two vehicles flying at exactly the same height above sea level but if you use the getpos command to acquire their ‘z’ co-ordinate you will have two different values returned if they are flying over different terrain level heights (e.g. one is hovering over a small hill and the other over a plain). We don’t want this for many applications in OFP so we use heights above sea level instead. More about which later.

· 3 BankPitchObjPos = "Logic" camcreate [0,0,0]

This line I suppose answers my question from line 2. This is without doubt creating a game logic unit and as above is setting at co-ordinates [0,0,0]. This position array corresponds to the very corner of the map which is always at sea level in all the Bohemia made maps. Again it is quite obviously for height above sea level references.

· 4 BankPitchCalcHeightASL = preprocessfile "GetBankPitch_CalcSLDist.sqf"

Here is our first function .sqf file declaration.. It does two things. Firstly it declares the presence of the function and its location (stored in the GetBankPitch folder under the name _CalcSlDist.sqf). It also defines the name used to call the function. Remember earlier we discussed how to declare a function but we also talked about how they behave differently from scripts. Well they are not called using the exec command. They are called using the call command. At this point have a good look at the code in this line. When the utility calls this function in a script or function later on it will use the following line of code:

myvehicle call BankPitchCalcHeightASL

Note it uses the call command not the exec command and it does not point directly to the location of the function nor does it have to include the file extension .sqf. All it has to do is quote the name we assigned to the function at the start of line 4, which is BankPitchCalcHeightASL.

If you’re struggling hard to understand all this then this would be a good time to stop reading this project and go and do some research on some more basic aspects of programming and scripting for OFP, as this is probably a fair way above your level at the moment, but it won’t be once you’ve learned a bit more.

· 5 BankPitchTestPoints = preprocessfile "GetBankPitch_TestPoints.sqf"

Another function .sqf declaration. This one is declaring the function which performs the drop commands used for getting positional data on the vehicle. We will work through this one later.

· 6 GetBankPitch = preprocessFile "GetBankPitch_GetBankPitch.sqf"

Another function .sqf declaration. This one is declaring the function which does all the trigonometry required to get the pitch and bank data. This is one of the three functions which is called from within the game or mission to return values of pitch and bank, only this one returns an array which contains both pitch and bank and the programmer must select which he requires from this array. More about which later.

· 7 GetBank = "call GetBankPitch select 0"

This is another one of the three functions which can data from the vehicle. Above I said there were three functions which can do this. Well in part I lied. There is infact only one which is GetBankPitch. All this line and the one below it do are initiate a variable which if called will return only part of the array created by the GetBankPitch function. In this case it will return the bank of the vehicle.

· 8 GetPitch = "call GetBankPitch select 1"

As above but it points to the part of the GetBankPitch returned array which corresponds to pitch, rather than bank.

I must add at this point though I myself am a little confused. In the readme file of this utility it states that to get only pitch or bank data you must call only the relevant part of the function either GetBank or GetPitch as shown above. However the code used to it is as follows:

_pitch = mychopper call GetPitch

Seems reasonable you might think, but if you look at what the variable GetPitch actually corresponds to then the total code would look like this:

_pitch = mychopper call call GetBankPitch select 1

Note that the call command is present twice as GetPitch is a variable it is not dedicated to a .sqf function directly using the preprocessfile command. I suppose this is just how it is done, but it did throw me a little when I first saw it.

· 9 GetHeightASL = preprocessfile "GetBankPitch_CalcSLDist2Obj.sqf"

This should be looking rather familiar by now. It’s another sea level function declaration. More about its specific use later.

· 10 "_x exec ""GetBankPitch_initVehicle.sqs""" foreach _this

The most interesting line of code for a few lines. This is instructing that the script _initVehicle.sqs is to be executed for every item contained within the array that was used to call this script. The _this part of the code is referring to the array we used to call the script in the Init.sqs script (the one containing our vehicleID’s). Remember that although I will be talking mainly from the standpoint of this utility executing for only one vehicle, it can execute for several vehicles simultaneously. It is very important to remember this as the author has had to do some clever scripting to accommodate for this is in the next script that executes which is as you can see _initvehicle.sqs.

_initVehicle.sqs:

Although you can’t see it because of the underline this script has an underscore ‘_’ at the start of it. I don’t think this has any relevance at all except it is there just to remind the author that it is private to the GetBankPitch folder.

The script:

_ChkPlane = vehicle _this

_ActPlaneIndex = 0

~ (random .5)

PlaneInfo resize ((count PlaneInfo) + 1); _ActPlaneIndex = count PlaneInfo – 1;

PlaneInfo set [_ActPlaneIndex, [_ChkPlane, 0,0,[0,0,0],[0,0,0],[0,0,0]]]

_ActPlaneInfoElement = PlaneInfo select _ActPlaneIndex

#loop

_ChkPlane call BankPitchTestPoints;

~.01

? alive _ChkPlane: goto "loop"

Could quite happily be written as follows:

_ChkPlane = vehicle _this

_ActPlaneIndex = 0

~ (random .5)

PlaneInfo resize ((count PlaneInfo) + 1)

 _ActPlaneIndex = count PlaneInfo - 1

PlaneInfo set [_ActPlaneIndex, [_ChkPlane, 0,0,[0,0,0],[0,0,0],[0,0,0]]]

_ActPlaneInfoElement = PlaneInfo select _ActPlaneIndex

#loop

_ChkPlane call BankPitchTestPoints;

~.01

? alive _ChkPlane: goto "loop"

Analysis:

· 1 _ChkPlane = vehicle _this

Remembering that this script was executed using a vehicleID from the array which was used to initiate the InitBankPitch.sqs script, this line of code is assigning the vehicleID which is used to initiate this script to a private/local variable called _ChkPlane.

· 2 _ActPlaneIndex = 0

This is a simple number variable. It is to be used as a counter for altering specific elements of an upcoming array.

· 3 ~ (random .5)

Remember we said that this utility must execute for every vehicle in the array which is used to begin this utility? Well here is the point at which that would start to throw up problems if this script were executed perfectly simultaneously several times over. What the author of this script wanted was to have this script run through entirely for each vehicle without any unpleasant cross references occurring between each execution of the script. The reason this is required is because this script contains a reference and some code which concerns the global array Planeinfo. If for example four versions of this script were running simultaneously it would be impossible to modify separate elements of the Planeinfo array for each vehicle. More than likely (and this is only a guess) you would just end up with only one element in the Planeinfo array which corresponded to just one vehicle (more than likely the first one called). The random wait time causes each version or copy of this script to execute at different times which allows the Planeinfo array to have elements in it set to those which correspond to a specific vehicle in the vehicle array used to initiate this script. If you imagine the numbers that will be returned from this line might be say:

(0.08)s Script1

(0.1)s Script2

(0.15)s Script3

(0.34)s Script4

Then each version/copy of the script will execute at its own specific time, and will not cause nasty interferences with each other. This will become clearer as you work down this page.

· 4 PlaneInfo resize ((count PlaneInfo) + 1)

This increments the array size by 1. Remember its starting size is zero, so I presume it needs to be upped to 1 to be able to contain anything.

· 5 _ActPlaneIndex = count PlaneInfo – 1

Here we set the counter variable to one less than the number of elements present in the Planeinfo array. The reason being that this variable (_ActPlaneIndex) is to be used as a reference to a specific element in the PlaneInfo array. Remember that the first element of an array will have elementID ‘0’ (zero) in that array even though the array’s size is considered to be 1. It is important to note that array elementID’s do not begin at 1, they begin at 0.

So we have incremented the PlaneInfo array size by one and have told the counter _ActPlaneIndex to point to this new element.

· 6 PlaneInfo set [_ActPlaneIndex, [_ChkPlane, 0,0,[0,0,0],[0,0,0],[0,0,0]]]

And here it is. The summary of the previous two lines. This command is not creating two elements in the PlaneInfo array, it is creating only one. The _ActPlaneIndex number instructs the set command as to which element on the PlaneInfo array it is to update. The next part tells the set command what to change this element to. In this particular case if this were the first version of this script which were to run then line 6 would change element 0 (the first element) of the PlaneInfo array to:

[_ChkPlane,0,0[0,0,0],[0,0,0],[0,0,0]]

· 7 _ActPlaneInfoElement = PlaneInfo select _ActPlaneIndex

It is actually my belief that this line was left in by mistake. It is used elsewhere in this utility and seems to serve no purpose here. Plus also note that it is a variable local only to this script, and it is not used in this script. More evidence to support my first observation.

· 8 #loop

Begin a loop. This shouldn’t need any explanation if you can make it this far.

· 9 _ChkPlane call BankPitchTestPoints;

Start the next part of the utility which is a function .sqf file using the vehicleID to initiate the function. Note this is to be executed over and over again.

· 10 ~.01

Wait time. Avoids infinite loop errors.

· 11 ? alive _ChkPlane: goto "loop"

Check to see if the vehicle is still actually alive. Obviously we don’t want to waste CPU power computing its bank and pitch if it has been knocked out. That’s it for this script and we move onto the next part of the utility : o)

_Testpoints.sqf:

Now we are on to our first function. Note I have called it its proper name (its file name as it appears in the GetBankPitch folder) whereas it was if you remember called by using the name BankPitchTestPoints in the _initVehicle.sqs script because this is what it was declared as in the InitBankPitch.sqs script. Even if you didn’t follow what I’ve just said it isn’t massively important.

The function:

drop ["cl_fire", "", "Billboard", 0, 0, [0, 5, 0], [0, 0, 0], 1, 1.25, 1, 0, [1],[[0, 0, 0,0]],[0],0,0,"","GetBankPitch_dropfront.sqs", _this];

drop ["cl_fire", "", "Billboard", 0, 0, [5, 0, 0], [0, 0, 0], 1, 1.25, 1, 0, [1],[[0, 0, 0,0]],[0],0,0,"","GetBankPitch_dropright.sqs", _this];

drop ["cl_fire", "", "Billboard", 0, 0, [0, 0, 0], [0, 0, 0], 1, 1.25, 1, 0, [1],[[0, 0, 0,0]],[0],0,0,"","GetBankPitch_dropcenter.sqs", _this];

Analysis:

· drop ["cl_fire", "", "Billboard", 0, 0, [0, 5, 0], [0, 0, 0], 1, 1.25, 1, 0, [1],[[0, 0, 0,0]],[0],0,0,"","GetBankPitch_dropfront.sqs", _this]

Time to come clean. I do not fully understand the array used when calling the drop command. The beautiful truth is however, I don’t need to. Through some detective work I did I have figured out the parts of this array which we are interested in for the purpose of understanding this utility. Take a good look at the sixth element from the left of the array. You should be looking at this:

[0,5,0]

Now look at the same element for the arrays in the code lines below. Notice anything? Have you ever used the camsetrelpos command before? If not, research it now as do not have the time or space to explain it here. Before I go any further remember that this function is executed using a vehicleID from the _initVehicle.sqs script. That is what the last element of this array refers to by using the _this command/statement (whatever you want to call it). I think it is fair to conclude therefore that the positional array shown in purple is initiating a drop at a point 5 metres directly ahead of the vehicle. If this were referenced only to the origin of the vehicle and took no account of its pitch then I’m sure this utility would not work. I suspect therefore that this purple array is referenced to the vehicle’s frame and not its [x,y,z] co-ordinates. I’m sure I saw this mentioned on the BI forums. Notice also that if it is using the same convention as the camsetrelpos command then this also corresponds nicely to the fact that this line is calling _dropfront.sqs, the next line is calling _dropright.sqs, and the bottom line is calling _dropcentre.sqs. If you know this to be wrong for certain please get in touch.
· drop ["cl_fire", "", "Billboard", 0, 0, [5, 0, 0], [0, 0, 0], 1, 1.25, 1, 0, [1],[[0, 0, 0,0]],[0],0,0,"","GetBankPitch_dropright.sqs", _this]

As above, but for the drop to the right of the vehicle.

· drop ["cl_fire", "", "Billboard", 0, 0, [0, 0, 0], [0, 0, 0], 1, 1.25, 1, 0, [1],[[0, 0, 0,0]],[0],0,0,"","GetBankPitch_dropcenter.sqs", _this]

As above but for the drop at the vehicle’s centre.

Note it is not necessarily vital to understand the drop command here. I am trying to show you the necessary detective style thought processes required to completely understand an entirely undocumented piece of somebody else’s work. That’s it for this one, next lets look at each of the drop scripts which are called in each of the three lines of code above.

_dropfront.sqs:

The function:

_i=0

#loop

if (abs((_this select 0) - (getpos ((PlaneInfo select _i) select 0) select 0)) <= 8) then {(PlaneInfo select _i) set [3 , _this];exit}

_i=_i + 1

? _i < count PlaneInfo : goto "loop"

Analysis:

· 1 _i=0

This is a private variable to be used as a counter. This should be very familiar to anyone who understands everything up to now.

· 2 #loop

Begin a loop.

· 3 if (abs((_this select 0) - (getpos ((PlaneInfo select _i) select 0) select 0)) <= 8) then

 {(PlaneInfo select _i) set [3 , _this];exit}

The interesting bit. This will require quite a bit of explanation. Before starting this project I did not understand what the abs command did. I have since learned that it appears to produce only a positive value from any calculation. That is if I executed the following line of code:

_value = abs (-2 - 4)

The value of the _value variable would be +6 not -6. I checked this out using a quick script I made which killed the player if the value that came back was greater than zero. It proved that even when I inputted negative values the result that came back was always positive. This in itself is not difficult to grasp however the clever purpose behind this line of code is quite difficult to grasp. Hmm.. I feel a CAD drawing coming on, but first some more explanation. At a good guess the _this part of this line of code refers to the drop made in the previous part of the utility. In particular I believe it refers to its co-ordinates. The reason I have deduced this is because it performs a calculation involving the ‘x’ co-ordinate of the vehicle assigned to the _Chkplane variable. You can tell this by studying closely the part of the line of code which has this in it:

(getpos ((PlaneInfo select _i) select 0) select 0)

Note the PlaneInfo select _i part refers to one of the elements in the PlaneInfo array. Remember that each element of this array was set to the following in _initVehicle.sqs:

[_ChkPlane,0,0[0,0,0],[0,0,0],[0,0,0]]

The script begins by selecting the first element in the PlaneInfo array. We know this because to begin with _i is equal to 0, therefore the first element of the array will be selected. I have shown above what each element of the PlaneInfo array is comprised of. Bear in mind the _ChkPlane variable will correspond to a different vehicle for each element of the PlaneInfo array which exists.

So, the code in line 3 tells the computer to select the first element in the PlaneInfo array. Then it tells the computer to select the first element of that array ((PlaneInfo select _i) select 0). This therefore corresponds to the variable _ChkPlane. So the following part of the code:

((PlaneInfo select _i) select 0)

is selecting the _ChkPlane variable in the array contained in the first element of the PlaneInfo array. Sorted (well hopefully!). Next it returns the ‘x’ co-ordinate of the vehicle assigned to _ChkPlane by using the getpos command. So,

(getpos ((PlaneInfo select _i) select 0) select 0)

returns the ‘x’ co-ordinate of the vehicle assigned to the _ChkPlane variable which is contained in the array which is in the first element (element 0) of the PlaneInfo array. It might help you to think of the two different types of arrays as folders and sub-folders, where the PlaneInfo array is the folder and the:

[_ChkPlane,0,0[0,0,0],[0,0,0],[0,0,0]]

array is a sub-folder of the PlaneInfo array. It helped me anyway. But here’s a drawing to make sure:

[image: image3.jpg]Planelnfo [0,1,2,3,4,X]

[_ChkPlane,0,0[0,0,0],[0,0,0],[[_ChkPlane,0,0[0,0,0]{0,0,0)[0,0,0]]

[_ChkPlane,0,0[0,0,0],[0,0,01,[0,0, [_ChkPIane,0,0[0,0,0],[0.0,01,[0.01]

[_ChkPlane,0,0[0,0,0],[0,0,0],[0,0,0]] [_ChkPlane,0,0[0,0,0],[0,0,0],[0,0,0]]

To return to my original point before I had to go off at a tangent, this lends even more weight to the suggestion that the _this select 0 part of the code in line 3 is returning the ‘x’ co-ordinate of the drop done in the _testpoints.sqf function. Why else would the author instruct it to have a vehicle’s ‘x’

co-ordinate subtracted from it?

If you look at the rest of that line up until the end bracket you will see that it performs a check to see if the returned absolute value is less than or equal to 8. It appears to me that this is some kind of positional check to make sure that the script is about to execute on the part of the PlaneInfo array which corresponds to the correct vehicle. Remember that the scripts in this utility execute for every vehicle called in the first array of the Init.sqs file. Given the deductions we have made above I think it is very safe to say that the variable/object/parameter (whatever you want to call it) that is called to initiate this script relates to the drop performed in the _testpoints.sqf function. Specifically I believe it is an array containing positional data about the drop.

That said we can now establish why the author has used a check to see if the returned absolute value of the subtraction is less than or equal to 8. We can also show why the script does not update the selected PlaneInfo array element (determined by the value of _i) if the returned absolute value is greater than 8. We can also expose a potential weakness of this script too. All this will be explained below.

if (abs((_this select 0) - (getpos ((PlaneInfo select _i) select 0) select 0)) <= 8) then

{(PlaneInfo select _i) set [3 , _this];exit}

Still concentrating on the first part of this line of code, think about what is actually going on here. _i begins at zero and therefore this script runs using the first element of the PlaneInfo array, specifically concentrating on the vehicle contained within it represented by the _ChkPlane variable (could also be called an object more accurately- rather than a variable). If the difference between the ‘x’ co-ordinate of the drop made in the first line of the _testpoints.sqf function and the ‘x’ co-ordinate of the vehicle attached to the first element of the PlaneInfo array are less than 8, then the PlaneInfo array is modified by the following part of the code:

(PlaneInfo select _i) set [3 , _this]
We’ll come back to how it is modified later, but let’s ignore that for now. Consider what would happen if the ‘x’ co-ordinate difference between the drop and the selected vehicle was greater than 8. The then part of the code in line 3 is ignored as the condition required to activate it has not been met, and the PlaneInfo array is not updated. Now is a good time to look at line 4.

· 4 _i=_i + 1

Following on from above, if the if condition in line 3 is not met then the computer skips past the then command and goes straight to this line, which instructs the value of _i to be incremented by 1. The we have line 5.
· 5 ? _i < count PlaneInfo : goto "loop"

This checks to make sure that the value of _i is still less than the total number of elements in the PlaneInfo array. Remember just like _ActPlaneIndex from earlier, _i (not marked red from now on) is used as a counter to point at specific elements of an array and must therefore always be 1 less than the value of the actual physical slot occupied by the element we want to look at (i.e. to look at the first element you need the select 0 instruction).

This particular line of code is checking to make sure that the value of _i is never equal to the size of the PlaneInfo array. If it were we would know that we had performed the script for the last element in the PlaneInfo array, and would thus need to exit. Oddly enough however, the author of this utility did not include a line instructing the script to exit if this condition is not met. Why this is I do not know. I also suspect that this part of the utility might work just as well if line 5 were changed to simply:

Goto “loop”

I don’t think it really needs the check to be performed. This will become clearer below.

So, to summarise:

We have a script which checks to see if the difference between the ‘x’ co-ordinate of the drop made in line 1 of _testpoints.sqf and the ‘x’ co-ordinate of the vehicle contained in the element of the PlaneInfo array being looked at, is less than or equal to 8.

If it is less than or equal to 8, then the PlaneInfo array is updated, and the script exits. If it is greater than 8, the script re-executes for the next element of the PlaneInfo array by incrementing the value of the counter _i which is contained within a loop.

The script will check through every element of the PlaneInfo array until it finds one which contains a vehicle whose ‘x’ co-ordinate is less than or equal to 8 metres away from the ‘x’ co-ordinate of the drop made in line 1 of the _testpoints.sqf function.

I would assume by now that the reason behind this is becoming rather obvious. Remember that the _testpoints.sqf function is called with a vehicle as its initiating parameter. The drop is then performed relevant to that vehicle. Then this script executes using the drop made in _testpoints.sqf as its initiating parameter. This script then checks to make sure that the distance between the drop and the vehicle currently focussed on in the PlaneInfo array is not too large.

Beginning to see it? Saw it ages ago? No matter I will explain it anyway. Given the points I have just made above now throw into the mix the reminder that the PlaneInfo array can itself contain several arrays each one relating to a specific vehicle, and this utility causes multiple, identical copies of the same script to execute almost simultaneously for each vehicle.

So if we don’t perform a check to make sure we are looking at the right vehicle in the PlaneInfo array how will we know we are updating the correct part of the PlaneInfo array in this script? Put simply, we won’t. That’s why this distance check is there. It makes certain the drop’s positional data is used to update the correct element of the PlaneInfo array.

If it wasn’t there we could have the drop’s positional data loaded into a part of the PlaneInfo array which corresponded to the wrong vehicle, i.e. not the one we performed the drop on in the _teestpoints.sqf function. This would render the task of providing pitch and bank data for individual vehicles impossible.

However:

There is a slight flaw in this utility. Have you ever seen two vehicles crash into each other (helicopters for example) which did not destruct as a result of that collision? They just lost some armour points and maybe broke their windscreen but then carried on their merry way? Well consider what would happen if this occurred for two vehicles who were both running this utility. See the diagram below:

[image: image4.jpg]EVERYTHING OK UTILITY WORKING FINE DETECTION PROBLEM CAUSED BY COLLISON

e

XPOSTIONOF x POSTION OF
oRoP HEUCOPTER

Y

XPOSTIONOF
oroe

xPoSTION OF
FEcorTER

XPOSTION OF

HELICOPTER. Metre:

Metre: Metre:

Metre:

Hopefully it is reasonably self explanatory. It has been done assuming a horizontal collision. Again you may have to zoom in to get the best from it. Note that when the collision occurs both aircraft are within the 8 metre offset distance. Obviously both aircraft could be at very different pitch angles at this point. Given that both are however within the checking distance it is very possible that at some point whilst this collision is taking place the wrong drop data could be used to update a certain element in the PlaneInfo array. As has been stated both aircraft would more than likely be at very different pitch angles at this point, therefore severe disruption of retrieved pitch and bank data could occur for both aircraft during this time. This would not be good for a script which relied on super accurate values of bank and pitch all the time to provide vital data to either or both aircraft, or possibly even to something which was attempting to track the aircraft. It is unlikely to happen but it is possible.

That just about covers that one. Except we have one more little thing to cover before moving on. Once we have gotten past this bit most of the hard work is well and truly done, but for now I need a break, so I’ll stop here and go down stairs and probably watch some stuff on television along with a cup of tea. Obviously by the time you are reading this I will have finished my break and completed this document, so you will have no proof that my planned break actually took place. Rest assured however, it did.

I’m back, and it’s sometime in the afternoon of the same day when I took my break, as my break occurred in the very early hours of the morning. So assuming that there are no positional clashes as described above, what does happen if the script executes with no problems and on the correct vehicle? Well if you have a look at the following line of code again:

if (abs((_this select 0) - (getpos ((PlaneInfo select _i) select 0) select 0)) <= 8) then

{(PlaneInfo select _i) set [3 , _this];exit}

Looking at the part highlighted in purple, we can see that this line of code instructs the selected element of the PlaneInfo array to be updated using the set command. I will refer to the following array:

[_ChkPlane,0,0[0,0,0],[0,0,0],[0,0,0]]

as the _Chkplane array from now on. So the code is telling one of the _Chkplane arrays contained in the PlaneInfo array to be altered. Specifically it is altering element 3 of the _Chkplane array. If you look at the _Chkplane array we can see this is the first of three [0,0,0] type arrays contained within the _Chkplane array. Obviously it is a positional array. Note it is also being instructed to update it with a _this object. Remember that the _this object in this script corresponds to a positional array which contains the co-ordinates of the drop performed in the previous function.

So, if the check performed to see if the drop is being referenced to the correct vehicle is ok, then the if command is satisfied and the code then updates the relevant _Chkplane array element with a positional array containing data about the drop performed in the first line of the _testpoints.sqf function. So if the position of the drop performed in the first line of the _testpoints.sqf function were for example [23,87,15] then the _Chkplane array would now look like this:

[_ChkPlane,0,0[23,87,15],[0,0,0],[0,0,0]]

That should make perfect sense. If it doesn’t read through it again, as it often takes a good few tries to understand these things.

That’s it for this bit. Onto the next one. Note that dropright.sqs and dropcentre.sqs work in exactly the same way, they just update different parts of the _Chkplane array. If you look specifically at them you will see dropright.sqs updates element 4 of the _Chkplane array and _dropcentre.sqs updates element 5 of the _Chkplane array. So basically the _Chkplane array for the relevant vehicle is updated with positional data about the drops performed in the _testpoints.sqf function, and the part of the _Chkplane array which is updated corresponds to whether the drop was made in right, centre or front:

[_ChkPlane,0,0[dropfront],[dropright],[dropcentre]]

That really is all I want to do for this part of the utility. I really can’t explain it any more clearly than that.

Now we have come to the end of what we need to look at before the scripter/user actually makes the decision to acquire bank and/or pitch data about his/her chosen vehicle. Basically once this utility is initiated the scripts and functions you have seen so far will constantly execute for each vehicle passed into the array at the very beginning in the Init.sqs script. Now we need to look at the next part of the utility. This part will only execute when the user initiates it. It is the GetBankPitch.sqf function. It does two main things. It performs the necessary calculations based on the information loaded into the _Chkplane arrays in the PlaneInfo array, which we have just covered. The next thing it does is it then puts this data (which is now completed bank and pitch data) into an array inside the function which is then accessed by the game when the user tells it to. Let’s have a look at it:

_GetBankPitch.sqf:

This function contains the last few pieces of this riddle. As stated above here is where the pitch and bank data are actually calculated. It calls two other functions which were declared in the InitBankPitch.sqs file. Both return information about height above sea level. I do not have the time to explain how height above sea level functions work (they are not difficult), you can easily research this for yourself or you can contact me about it separately. Please goto the next page.

The function:

private ["_i", "_Ret", "_posCenterz","_dnz","_dbz", "_bank", "_Pitch", "_ActPlaneInfoElement"];

_Ret = [999,999];

_i = 0;

while "_i < count PlaneInfo" do

{

if((PlaneInfo select _i) select 0 == _this) then

{

_ActPlaneInfoElement = PlaneInfo select _i;

_posCenterz = (_ActPlaneInfoElement select 5) call BankPitchCalcHeightASL;

_dnz = ((_ActPlaneInfoElement select 3) call BankPitchCalcHeightASL) - _posCenterz;

_dbz = _posCenterz - ((_ActPlaneInfoElement select 4) call BankPitchCalcHeightASL);

_bank = asin (_dbz/5.0);

_Pitch = asin (_dnz/5.0);

_Ret = [_bank, _Pitch];

_i = count PlaneInfo;

}else{_i = _i+1;};

};

_Ret

Doesn’t look too friendly does it? Also it contains a command I have never seen used in OFP before although I’m sure I have seen it when writing a batch printing script for work in Visual Basic. After briefly looking through this it does infact appear to be mercifully straight forward. Let’s go through it:

· 1 private ["_i", "_Ret", "_posCenterz","_dnz","_dbz", "_bank", "_Pitch", "_ActPlaneInfoElement"]

This I have never seen before. Perhaps it is unique to functions only. The author is declaring that the variables contained within this array should be private/local to this function only. I have seen this before when programming for Visual Basic where it was necessary to declare the nature of your variables before you used them to save the computer having to load them up every time it found them. Apparently it made a reasonable saving in CPU power. Given that the author of this utility appears to have gone to some considerable length to use functions instead of scripts wherever possible, I assume this is again intended to save CPU power and keep execution time right down.

· 2 _Ret = [999,999]

What the hell this is I have no idea. It becomes the array which stores pitch and bank data and the author of this utility has chosen to put its initial values equal to 999 for both pitch and bank. Not sure why, maybe setting it to zero for both values caused problems. Who knows. If you’re really interested then you can test this out for yourself (I doubt many will do this).

· 3 _i = 0

Another counter, we’ve seen plenty of these by now.

· 4 while "_i < count PlaneInfo" do

This line executes the code underneath it whilst _i is less than the size of the PlaneInfo array. We’ve discussed why this is already in previous sections.

· 5 {

The bracket which defines the beginning of the block which is sub-ordinate to the while command.

· 6 if((PlaneInfo select _i) select 0 == _this) then

Checks to make sure that the vehicle used to call this function is the same one in the _Chkplane array of the currently selected element of the PlaneInfo array (dependant upon the value of _i).

· 7 {

The bracket which defines the beginning of the block which is sub-ordinate to the if command.

· 8 _ActPlaneInfoElement = PlaneInfo select _i;

Instructs one of the private variables defined at the beginning of this function to be assigned to the element of the PlaneInfo array denoted by _i.

· 9 _posCenterz = (_ActPlaneInfoElement select 5) call BankPitchCalcHeightASL;

Here comes a slightly interesting bit. Again I will state that I will not go into the workings of the height above sea level script concept. In case you are interested it looks like the height above sea level concept used in this utility maybe actually be incorrect. It appears to place a game logic at the position of the centre drop and then an empty trigger at the same ‘x’ and ‘y’ co-ordinates as the centre drop but with its ‘z’ co-ordinate forced to zero. In my experience of scripting I have found this does not actually return proper values for height above sea level. It returns values for height above terrain. Although I think Dschulle’s work is generally of a very high standard, I don’t like this part of the utility and I will be changing it for my own adapted version.

· 10 _dnz = ((_ActPlaneInfoElement select 3) call BankPitchCalcHeightASL) - _posCenterz;

So if we follow on from the observations above _dnz is equal to the difference in height (intentionally but not actually above sea level) between the centre drop and the front drop. Clearly if the vehicle was pitched forward or backward at this time these values would be different and the angle between them from the horizontal can be worked out using a trigonometry right angled triangle.

· 11 _dbz = _posCenterz - ((_ActPlaneInfoElement select 4) call BankPitchCalcHeightASL);

Exactly the same as above, but it is done for the centre drop and the right drop. This is obviously for working out bank instead of pitch.

· 12 _bank = asin (_dbz/5.0)

And here comes one of the things we have waited rather a long time to see. If you have persevered this far you have done extremely well. While many other people in Operation Flashpoint spend their time blowing up tanks and soldiers in the mission editor or playing through single missions over and over again, or criticising other people’s work, you have not been. You have been learning. I hope this will pay off for you. You have now witnessed exactly how the bank of a vehicle is calculate using a very complicated utility. If you understand trigonometry (which I recommended you did before you started reading this) then this line of code will be easy to understand. For those not familiar with the asin function in flashpoint it is the inverse of the sin function.

· 13 _Pitch = asin (_dnz/5.0)

As above, but for pitch.

· 14 _Ret = [_bank, _Pitch]

Here is the array which the bank and pitch data are stored into.

· 15 _i = count PlaneInfo;

Causes the while command to exit.

· 16 }else{_i = _i+1;}

Part of the if block. This causes the function to cycle through all elements of the PlaneInfo array until it finds the right one. Not sure why the semi-colon ; has been left within the {} brackets, suspect it doesn’t need to be there.

· 17 }

Denotes the end of code sub-ordinate to the while command.

· 18 _Ret

Don’t know what the hell this is for. Perhaps it causes the function to return to the _Ret code line (line 2) in this function? I imagine most likely it will do, although I’m not sure.

That my friends is it. Congratulations. I hope you learned something. Please have a look at the next page before you rush out and start writing complicated scripts!

Credits:

Although this entire document is all my own work, and was producing entirely by myself I would like to thank a few people for helping me out along the way during my Operation Flashpoint journey which began some years ago now.

OFPEC – A brilliant site, currently being revamped. This is where I learned my first few things about OFP scripting in a tutorial by a guy called snYpir.

Ex-Ronin – A very nice moderator who gave me a lot of help and encouragement when I made my first addon. He moderates at the BI Forums.

Blanco – One of the staff at OFPEC. A friendly guy who encouraged me when I made my pitching camera script.

UNN – A very helpful member of the BI Forums. A technical expert in OFP.

RKSL – Another helpful member of the BI Forums.

Placebo – The main moderating man at BI Forums.

Denoir – Haven’t seen him for ages but he used to be a big moderator at the BI Forums. One of my favourite characters in the OFP community even though I hardly ever spoke to him and don’t know why he disappeared. Thought I’d mention him anyway.

Final note:

Best of luck with your scripting, and any future projects you may have. This was not done with any commercial interest in mind but if you don’t ask you don’t get. At present I live in the Northwest of England and I am in a job I would like to move on from, and I am prepared to re-locate. Just thought I’d mention that just in case, after all you never know who may end up reading this.

Feel free to contact me if you wish, although I can’t guarantee that the e-mail addresses I have provided at the start of this document will always be valid, although I would imagine you will always be able to get hold of me through my hotmail address. If not try the forums.

Hope you enjoyed it all.

Bye for now,

Chris Hampson

